ΟΙΚΟΝΟΜΟΜΕΤΡΙΚΕΣ ΜΕΘΟΔΟΙ

ΤΕΤΑΡΤΗ ΑΜΕΡΙΚΑΝΙΚΗ ΕΚΔΟΣΗ

JACK JOHNSTON
JOHN DINARDO
Περιεχόμενα

1. Σχέσεις μεταξύ δύο μεταβλητών ... 21
 1.1 Παραδείγματα διμεταβλητών σχέσεων ... 21
 1.1.1 Διμεταβλητές κατανομές συχνοτήτων ... 25
 1.2 Ο συντελεστής συσχέτισης ... 27
 1.2.1 Ο συντελεστής συσχέτισης για διμεταβλητή κατανομή συχνοτήτων ... 29
 1.2.2 Τα όρια του r ... 30
 1.2.3 Πλασματικές συσχετίσεις και άλλα ζητήματα 30
 1.2.4 Μια πραγματική περίπτωση .. 32
 1.3 Υποδείγματα πιθανοτήτων για δύο μεταβλητές 33
 1.3.1 Διακριτή διμεταβλητή κατανομή πιθανότητας 34
 1.3.2 Η διμεταβλητή κανονική κατανομή ... 36
 1.4 Το υπόδειγμα διμεταβλητής γραμμικής παλινδρόμησης 38
 1.4.1 Ένα υπό συνθήκη υπόδειγμα ... 38
 1.4.2 Εκτιμήσεις και εκτιμητές ... 41
 1.4.3 Εκτιμητές ελαχίστων τετραγώνων ... 42
 1.4.4 Διαχωρισμός του αθροίσματος των τετραγώνων 44
 1.4.5 Ένα αριθμητικό παράδειγμα .. 45
 1.5 Επαγωγή από το υπόδειγμα των ελαχίστων δυο μεταβλητών 46
 1.5.1 Ιδιότητες εκτιμητών ελαχίστων τετραγώνων 47
 1.5.2 Θεώρημα Gauss–Markov ... 48
 1.5.3 Επαγωγικές μέθοδοι ... 49
 1.5.4 Αριθμητικό παράδειγμα (συνέχεια από την ενότητα 1.4.5) 52
 1.6 Ανάλυση διακύμανσης στο υπόδειγμα παλινδρόμησης δυο μεταβλητών ... 53
 1.7 Προβλέψεις με το υπόδειγμα παλινδρόμησης δυο μεταβλητών 55
 1.8 Κατανάλωση βενζίνης: μια προκαταρκτική ανάλυση 58
ΠΑΡΑΡΤΗΜΑ
1.1 Απόδειξη της σχέσης \(\text{var}(b) = \sigma^2 / \sum x^2 \) .. 60
1.2 Υπολογισμός μέσου όρου και διακύμανσης της κατανομής
δειγματοληψίας του \(a \) ... 60
1.3 Απόδειξη της σχέσης \(\text{cov}(a, b) \) ... 61
1.4 Θεώρημα Gauss–Markov .. 61
1.5 Υπολογισμός της \(\text{var}(e_i) \) ... 62
Προβλήματα... 62

2. Άλλες πλευρές των διμεταβλητών σχέσεων.. 67
2.1 Ο χρόνος ως μεταβλητή παλινδρόμησης... 68
 2.1.1 Καμπύλες σταθερού ρυθμού αύξησης.. 69
 2.1.2 Αριθμητικό παράδειγμα ... 70
2.2 Μετασχηματισμοί των μεταβλητών ... 71
 2.2.1 Μετασχηματισμοί λογάριθμος–λογάριθμος ... 71
 2.2.2 Ημιλογαριθμικοί μετασχηματισμοί ... 72
 2.2.3 Αντίστροφοι μετασχηματισμοί ... 74
2.3 Ένα εμπειρικό παράδειγμα μη γραμμικής σχέσης:
 πληθωρισμός και ανεργία στις ΗΠΑ.. 76
2.4 Εξαρτημένη μεταβλητή σε υστέρηση ως μεταβλητή παλινδρόμησης 80
 2.4.1 Εισαγωγή στην ασυμπτωτική θεωρία.. 81
 2.4.2 Σύγκλιση κατά πιθανότητα... 81
 2.4.3 Σύγκλιση ως προς την κατανομή.. 83
 2.4.4 Η εξίσωση αυτοπαλινδρόμησης .. 85
2.5 Στάσιμες και μη στάσιμες σειρές .. 85
 2.5.1 Μονοδιάδρομη άνευ... 87
 2.5.2 Αριθμητικό παράδειγμα ... 88
2.6 Εκτίμηση μέγιστης πιθανοφάνειας της εξίσωσης αυτοπαλινδρόμησης 90
 2.6.1 Εκτιμητές μέγιστης πιθανοφάνειας ... 90
 2.6.2 Ιδιότητες των εκτιμητών μέγιστης πιθανοφάνειας 92
ΠΑΡΑΡΤΗΜΑ
2.1 Αλλαγή μεταβλητών σε συναρτήσεις πυκνότητας.. 93
2.2 Εκτιμητές μέγιστης πιθανοφάνειας για το υπόδειγμα AR(1)................................. 95
Προβλήματα... 95

3. Η γραμμική εξίσωση και μεταβλητών... 99
3.1 Σχηματισμός μητρών στο υπόδειγμα των \(k \) μεταβλητών.............................. 100
 3.1.1 Η άλγεβρα των ελαχίστων τετραγώνων ... 101
 3.1.2 Διαχωρισμός των αθροίσματος των τετραγώνων 103
 3.1.3 Εξίσωση με τη μορφή αποκλίσεων ... 103
3.2 Συντελεστές μερικής συσχέτισης .. 107
3.2.1 Ακολουθιακή δημιουργία του ερμηνευμένου αθροίσματος τετραγώνων ... 109
3.2.2 Συντελεστές μερικής συσχέτισης και συντελεστές πολλαπλής παλινδρόμησης .. 112
3.2.3 Γενικός χειρισμός των συντελεστών μερικής συσχέτισης και πολλαπλής παλινδρόμησης.. 113
3.3 Η γεωμετρία των ελαχίστων τετραγώνων ... 115
3.4 Επαγωγικές διαδικασίες για την εξίσωση με k μεταβλητές............................. 118
3.4.1 Υποθέσεις ... 118
3.4.2 Μέσος όρος και διακύμανση του b ... 119
3.4.3 Εκτίμηση της σ2 .. 121
3.4.4 Θεώρημα Gauss–Markov ... 122
3.4.5 Έλεγχος γραμμικών υποθέσεων σχετικά με το β..................................... 123
3.4.6 Παλινδρόμησεις με περιορισμό και χωρίς περιορισμό............................. 128
3.4.7 Προσαρμογή της περιορισμένης παλινδρόμησης..................................... 129
3.5 Πρόβλεψη.. 132
3.6 ΠΑΡΑΡΤΗΜΑ
3.6.1 Να αποδειχθεί ότι

\[r_{13}^2 = r_{12} r_{23}(1 - r_{12}^2 r_{23}^2) \] .. 134
3.6.2 Επίλυση ως προς ένα συντελεστή παλινδρόμησης σε μια πολλαπλή παλινδρόμηση.............................. 135
3.6.3 Να αποδειχθεί ότι η ελαχιστοποίηση του α'α με τη συνθήκη X'α = c συνεπάγεται ότι

\[α = \frac{X'X}{XX'}^{-1} c \] .. 137
3.6.4 Πώς προκύπτει ο υπό περιορισμό εκτιμητής b* .. 137
3.6.5 Προβλήματα... 138

4. Μερικοί έλεγχοι σφάλματος εξειδίκευσης της γραμμικής εξίσωσης k μεταβλητών................................. 145
4.1 Σφάλμα εξειδίκευσης .. 146
4.1.1 Πιθανά προβλήματα με το u .. 146
4.1.2 Πιθανά προβλήματα με τη X .. 147
4.1.3 Πιθανά προβλήματα με το β .. 148
4.2 Αξιολόγηση υποδειγμάτων και διαγνωστικοί έλεγχοι.. 148
4.3 Έλεγχοι σταθερότητας των παραμέτρων... 149
4.3.1 Ο έλεγχος πρόβλεψης του Chow .. 150
4.3.2 Έλεγχος Hansen .. 153
4.3.3 Έλεγχοι βασιζόμενοι σε αναδρομική εκτίμηση.. 155
4.3.4 Σφάλματα πρόβλεψης για την αμέσως επόμενη περίοδο 156
4.3.5 Έλεγχοι CUSUM και CUSUMSQ ... 156
4.3.6 Ένας γενικότερος έλεγχος του σφάλματος περιγραφής:
ο έλεγχος RESET του Ramsey ... 158
4.4 Ένα αριθμητικό παράδειγμα.. 159
4.5 Έλεγχοι διαρθρωτικής μεταβολής... 165
4.5.1 Έλεγχος για μία διαρθρωτική μεταβολή ... 165
4.5.2 Έλεγχοι των συντελεστών κλίσης .. 166
4.5.3 Έλεγχοι των σταθερών όρων ... 167
4.5.4 Περίληψη .. 168
4.5.5 Αριθμητικό παράδειγμα ... 169
4.5.6 Επεκτάσεις ... 172
4.6 Ψευδομεταβλητές .. 173
4.6.1 Εισαγωγή .. 173
4.6.2 Ψευδομεταβλητές εποχικότητας... 174
4.6.3 Ποιοτικές μεταβλητές ... 175
4.6.4 Δύο ή περισσότερα σύνολα ψευδομεταβλητών.. 177
4.6.5 Αριθμητικό παράδειγμα ... 177
ΠΑΡΑΡΤΗΜΑ
4.1 Να αποδειχθεί ότι \(\text{var}(d) = \sigma^2[I_{n} + X(X'X)^{-1}X'] \) .. 179
5. Εκτιμητές μέγιστης πιθανοφάνειας (ML), γενικευμένων ελαχίστων
tetragónων (GLS), και βοηθητικών μεταβλητών (IV) 183

5.1 Εκτιμητές μέγιστης πιθανοφάνειας ... 183
5.1.1 Ιδιότητες των εκτιμητών μέγιστης πιθανοφάνειας 184
5.2 Εκτίμηση ML του γραμμικού υποδείγματος.. 186
5.3 Έλεγχοι λόγου πιθανοφάνειας, Wald, και πολλαπλασιαστή Lagrange 188
5.3.1 Έλεγχοι λόγου πιθανοφάνειας (LR) ... 188
5.3.2 Έλεγχος Wald (W) ... 189
5.3.3 Έλεγχος πολλαπλασιαστή Lagrange (LM)... 190
5.4 Εκτίμηση ML του γραμμικού υποδείγματος με μη σφαιρικούς
diagkekristikous όρους .. 192
5.5 Εκτιμητές βοηθητικών μεταβλητών (IV) ... 195
5.5.1 Ειδική περίπτωση ... 198
5.5.2 Επανάληψη τετράγωνα σε δύο στάδια (2SLS)... 199
5.5.3 Επιλογή των βοηθητικών μεταβλητών... 199
5.5.4 Έλεγχοι γραμμικών περιορισμών .. 200
ΠΑΡΑΡΤΗΜΑ
5.1 Αλλαγή μεταβλητών στις συναρτήσεις πυκνότητας .. 201
5.2 Κεντρικός και μη κεντρικός \(R^2 \) ... 201
5.3 Να αποδειχθεί ότι \(e^* X'(X'X)^{-1}X' e^* = e^* e^* - e^* e \) 203
Προβλήματα... 203
6. Ετεροσκεδαστικότητα και αυτοσυσχέτιση .. 205

6.1 Ιδιότητες εκτιμητών των κανονικών ελαχίστων τετραγώνων (OLS) 206
6.2 Έλεγχοι ετεροσκεδαστικότητας ... 209
6.2.1 Έλεγχος White ... 210
6.2.2 Έλεγχος Breusch–Pagan/Godfrey ... 211
6.2.3 Έλεγχος Goldfield–Quandt .. 212
6.2.4 Επεκτάσεις του ελέγχου Goldfield–Quandt 212
6.3 Εκτίμηση σε συνθήκες ετεροσκεδαστικότητας 215
 6.3.1 Εκτίμηση με ομαδοποιημένα δεδομένα 215
6.3.2 Εκτίμηση της σχέσης ετεροσκεδαστικότητας 215
6.4 Αυτοσυσχετιζόμενοι διαταρακτικοί όροι 219
 6.4.1 Μορφές αυτοσυσχέτισης: αυτοπαλίνδρομα σχήματα και σχήματα κινητού μέσου .. 220
6.4.2 Αιτίες για την ύπαρξη αυτοσυσχετιζόμενων διαταρακτικών όρων ... 221
6.5 Μέθοδος των κανονικών ελαχίστων τετραγώνων (OLS) και αυτοσυσχετιζόμενοι διαταρακτικοί όροι .. 222
6.6 Έλεγχος για αυτοσυσχετιζόμενους διαταρακτικούς όρους 224
 6.6.1 Έλεγχος Durbin–Watson .. 225
 6.6.2 Ο έλεγχος Wallis για αυτοσυσχέτιση τέταρτης τάξης 228
 6.6.3 Έλεγχοι Durbin για παλινδρομήσεις που περιέχουν τιμές της εξαρτημένης μεταβλητής με υστέρηση 229
 6.6.4 Ο έλεγχος Breusch–Godfrey ... 232
6.6.5 Η στατιστική Box–Pierce–Ljung .. 234
6.7 Εκτίμηση σχέσεων με αυτοσυσχετιζόμενους διαταρακτικούς όρους .. 235
6.8 Προβλέψεις με αυτοσυσχετιζόμενους διαταρακτικούς όρους 240
6.9 Αυτοπαλίνδρομη υπό συνήθη ετεροσκεδαστικότητα (ARCH) 244
7. Υποδειγματοποίηση μονομεταβλητών χρονοσειρών 253
 7.1 Σκεπτικό της μονομεταβλητής ανάλυσης 254
 7.1.1 Ο τελεστής υστέρησης ... 255
 7.1.2 Υποδειγματα ARMA ... 257
6.8 Προβλέψεις με αυτοσυσχετιζόμενους διαταρακτικούς όρους 240
 7.2 Ιδιότητες των διαδικασιών AR, MA, και ARMA .. 257
 7.2.1 Διαδικασία AR(1) ... 257
 7.2.2 Διαδικασία AR(2) ... 259
 7.2.3 Διαδικασίες MA ... 263
7.3 Έλεγχος στασιμότητας ... 266
 7.3.1 Εξέταση του γραφήματος .. 266
 7.3.2 Ολοκληρωμένες σειρές .. 271
7.3.3 Σειρές στάσιμες ως προς την τάση (TS) και στάσιμες ως προς τις διαφορές (DS) ... 271
7.3.4 Έλεγχοι μοναδιαίας ρίζας ... 275
7.3.5 Αριθμητικό παράδειγμα ... 278
7.4 Ταυτοποίηση, εκτίμηση, και έλεγχος των υποδειγμάτων ARIMA ... 280
7.4.1 Ταυτοποίηση ... 280
7.4.2 Εκτίμηση .. 281
7.4.3 Διαγνωστικός έλεγχος ... 282
7.5 Προβλέψεις ... 283
7.5.1 Διαδικασία MA(1).. 285
7.5.2 Διαδικασία ARMA(1,1) .. 286
7.5.3 Διαδικασία ARIMA(1,1,0) ... 286
7.6 Εποχικότητα .. 287
7.7 Αριθμητικό παράδειγμα: έναρξη κατασκευής νέων οικοδομών στις ΗΠΑ ανά μήνα ... 289
 Προβλήματα.. 296
8. Σχέσεις αυτοπαλίνδρομης κατανεμημένης υστέρησης................................. 299
8.1 Σχέσεις αυτοπαλίνδρομης κατανεμημένης υστέρησης 299
8.1.1 Σχέση σταθερής ελαστικότητας .. 300
8.1.2 Αναπαραμετροποίηση ... 300
8.1.3 Δυναμική ισορροπία ... 301
8.1.4 Μοναδιαία ελαστικότητα .. 301
8.1.5 Γενικεύσεις ... 302
8.2 Εξειδίκευση και έλεγχος .. 303
8.2.1 Από το γενικό στο ειδικό και αντίστροφα .. 304
8.2.2 Εκτίμηση και έλεγχος ... 306
8.2.3 Έξωγενεια .. 308
8.2.4 Έλεγχοι εξωγενειας .. 312
8.2.5 Έλεγχος Wu–Hausman ... 314
8.3 Μη στάσιμες μεταβλητές παλινδρόμησης 317
8.4 Ένα αριθμητικό παράδειγμα ... 323
8.4.1 Στασιμότητα .. 324
8.4.2 Συνολοκλήρωση ... 324
8.4.3 Μια επαναπροσδιορισμένη σχέση .. 328
8.4.4 Η γενική σχέση ADL ... 331
8.4.5 Αναπαραμετροποίηση ... 334
8.5 Μη ένθετα υποδείγματα .. 339
 ΠΑΡΑΡΤΗΜΑ
 8.1 Αντιστρέψιμοι γραμμικοί μετασχηματισμοί των μεταβλητών μιας εξίσωσης 342
 8.2 Καθιέρωση της ισότητας στις στατιστικές ελέγχου στις Εξ. (8.37) και (8.41) 345
 Προβλήματα.. 345
9. Υποδείγματα πολλαπλών εξισώσεων .. 347
 9.1 Διανυσματική αυτοπαλινδρόμηση (VAR) .. 348
 9.1.1 'Ενα απλό VAR ... 348
 9.1.2 VAR τριών μεταβλητών ... 353
 9.1.3 Συστήματα ανώτερης τάξης .. 355
 9.2 Εκτίμηση των VAR ... 356
 9.2.1 Έλεγχος της τάξης του VAR .. 357
 9.2.2 Έλεγχος αιτιότητας Granger .. 358
 9.2.3 Προβλέψεις, συναρτήσεις απόκρισης σε αιφνίδιες διαταραχές, και μη διαχωρισμός της διακύμανσης .. 358
 9.2.4 Συναρτήσεις απόκρισης σε αιφνίδιες διαταραχές 359
 9.2.5 Ορθογώνιες καινοτομίες ... 360
 9.2.6 Διαχωρισμός διακύμανσης .. 362
 9.3 Διανυσματικά υποδείγματα διόρθωσης σφάλματος 363
 9.3.1 Έλεγχοι για το βαθμό συνολοκλήρωσης .. 364
 9.3.2 Εκτίμηση διανυσμάτων συνολοκλήρωσης ... 365
 9.3.3 Εκτίμηση διανυσματικού υποδείγματος διόρθωσης σφάλματος 367
 9.4 Υποδείγματα ταυτόχρονων διαρθρωτικών εξισώσεων 367
 9.5 Συνθήκες ταυτοποίησης .. 372
 9.6 Εκτίμηση διαρθρωτικών εξισώσεων .. 377
 9.6.1 Μη στάσιμες μεταβλητές ... 380
 9.6.2 Μέθοδοι εκτίμησης συστημάτων ... 381

ΠΑΡΑΡΤΗΜΑ
 9.1 Φαινομενικά μη συνδεόμενες παλινδρομήσεις (SUR) 382
 9.2 VAR ανώτερου βαθμού .. 384
 9.2.1 Η διαδικασία VAR(1) .. 384
 9.2.2 Η διαδικασία VAR(2) .. 385

Προβλήματα .. 387

10. Η γενικευμένη μέθοδος των ροπών .. 393
 10.1 Η μέθοδος των ροπών .. 394
 10.2 Η μέθοδος των κανονικών ελαχίστων τετραγώνων (OLS) 396
 ως πρόβλημα ροπών ... 396
 10.3 Οι βοηθητικές μεταβλητές ως πρόβλημα ροπών 397
 10.4 GMM και συνθήκη ορθογωνιότητας ... 399
 10.5 Κατανομή του εκτιμητή GMM ... 402
 10.6 Εφαρμογές .. 404
 10.6.1 Ελάχιστα τετράγωνα σε δύο στάδια και έλεγχοι περιορισμών υπερταυτοποίησης .. 404
10.6.2 Επανεξέταση των ελέγχων Wu–Hausman
10.6.3 Μέγιστη πιθανοφάνεια
10.6.4 Εξισώσεις Euler
10.7 Κείμενα προς μελέτη

11. Μια πλούσια ποικιλία εντατικών υπολογιστικών μεθόδων

11.1 Εισαγωγή στις μεθόδους Monte Carlo
11.1.1 Μερικές γενικές οδηγίες για τα πειράματα Monte Carlo
11.1.2 Ένα παράδειγμα
11.1.3 Δημιουργία υφαντομοναδών αριθμών
11.1.4 Παρουσίαση των αποτελεσμάτων
11.2 Μέθοδοι Monte Carlo και ελέγχοι μεταθέσεων
11.3 Αυτοδύναμη μέθοδος – Bootstrap
11.4 Μη παραμετρική εκτίμηση πυκνότητας
11.4.1 Μερικές γενικές παρατηρήσεις για τη μη παραμετρική εκτίμηση πυκνότητας
11.4.2 Μια εφαρμογή: οι επιδράσεις των συνδικαλιστικών οργανώσεων στο οικομηχανικό
11.5 Μη παραμετρική παλινδρόμηση
11.5.1 Επέκταση: μερικώς γραμμικό υπόδειγμα παλινδρόμησης
11.6 Βιβλιογραφία

12. Δεδομένα panel
12.1 Πηγές και κατηγορίες δεδομένων panel
12.2 Η απλούστερη περίπτωση — Ο κοινός εκτιμητής
12.3 Δύο επεκτάσεις του απλού υποδειγματος
12.4 Το υπόδειγμα τυχαίων επιδράσεων
12.5 Οι τυχαίες επιδράσεις ως συνδυασμός των εκτιμητών εντός και μεταξύ
12.6 Το υπόδειγμα σταθερών επιδράσεων στην περίπτωση δύο περιόδων
12.7 Το υπόδειγμα σταθερών επιδράσεων με περισσότερες από δύο χρονικές περιόδους
12.8 Οι κίνδυνοι της εκτίμησης των σταθερών επιδράσεων...476
12.8.1 Παράδειγμα 1: σφάλμα μέτρησης της XT..................476
12.8.2 Παράδειγμα 2: ενδογενής X.........................479
12.9 Σταθερές ή τυχαίες επιδράσεις.................................480
12.10 Έλεγχος Wu–Hausman..............................481
12.11 Άλλοι έλεγχοι εξειδίκευσης και μια εισαγωγή στην προσέγγιση Chamberlain..482
12.11.1 Μαθηματική διατύπωση των περιορισμών..................484
12.11.2 Σταθερές επιδράσεις στο γενικό υπόδειγμα..............485
12.11.3 Έλεγχος των περιορισμών.........................486
12.12 Κείμενα προς μελέτη...487

Προβλήματα...538

13. Υποδείγματα διακριτών και περιορισμένων εξαρτημένων μεταβλητών...491
13.1 Κατηγοριες υποδειγμάτων διακριτής επιλογής......................492
13.2 Το γραμμικό υπόδειγμα πιθανότητας..........................494
13.3 Παράδειγμα: ένα απλό περιγραφικό υπόδειγμα συμμετοχής σε συνδικαλιστικό σωματείο...495
13.4 Σχηματισμός υποδείγματος πιθανότητας..........................498
13.5 Το υπόδειγμα PROBIT..499
13.6 Το υπόδειγμα LOGIT..505
13.7 Σφάλμα εξειδίκευσης στα υποδείγματα δυαδικών εξαρτημένων μεταβλητών.....507
13.7.1 Ετεροσκεδαστικότητα507
13.7.2 Εσφαλμένη εξειδίκευση στα υποδείγματα probit και logit.........509
13.7.3 Μορφή συνάρτησης: Ποιο είναι το σωστό υπόδειγμα?..512
13.8 Επεκτάσεις του βασικού υποδείγματος: ομαδοποιημένα δεδομένα........514
13.8.1 Μέθοδοι μέγιστης πιθανοφάνειας..........................514
13.8.2 Μέθοδοι ελάχιστου χ²..515
13.9 Διατεταγμένο PROBIT..517
13.10 Υποδείγματα TOBIT..519
13.10.1 Το Tobit ως επέκταση του probit..........................519
13.10.2 Παιτε να μπορείτε να αγνοήσουμε το πρόβλημα..........................522
13.10.3 Ετεροσκεδαστικότητα και Tobit..................................524
13.11 Δύο πιθανές λύσεις..525
13.11.1 Συμμετρικά περικομμένα ελάχιστα τετράγωνα......................525
13.11.2 Εκτιμητής λογοκριμένων ελαχίστων αποκλίσεων (CLAD)......528
13.12 Επιδράσεις θεραπείας και μέθοδοι δύο βημάτων................530
13.12.1 Η απλή διόρθωση Heckman................................532
13.12.2 Μερικές προειδοποιήσεις σχετικά με τη μεσολογγία επιλογής......534
13.12.3 Το Tobit ως ειδική περίπτωση.................................536
13.13 Κείμενα προς μελέτη..537

Προβλήματα...538
Παράρτημα Α: Αλγεβρα μητρών...541
 Α.1 Διανύσματα...541
 Α.1.1 Πολλαπλασιασμός με βαθμωτό...542
 Α.1.2 Πρόσθεση και αφαίρεση...542
 Α.1.3 Γραμμικοί συνδιασμοί...542
 Α.1.4 Λίγη γεωμετρία..542
 Α.1.5 Πολλαπλασιασμός διανυσμάτων..544
 Α.1.6 Ισότητα διανυσμάτων...545
 Α.2 Μήτρες...545
 Α.2.1 Πολλαπλασιασμός μητρών...546
 Α.2.2 Ανάστροφη γινομένου...547
 Α.2.3 Ορισμένες σημαντικές τετραγωνικές μήτρες.................................547
 Α.2.4 Διαμερισμένες μήτρες...550
 Α.2.5 Παραγώγιση μητρών...550
 Α.2.6 Επίλυση εξισώσεων..552
 Α.2.7 Η αντίστροφη μήτρα...553
 Α.2.8 Βαθμός μήτρας...554
 Α.2.9 Ορισμένες ιδιότητες των ορίζουσών..558
 Α.2.10 Ιδιότητες των αντίστροφων μητρών...559
 Α.2.11 Περισσότερα για το βαθμό και την επίλυση των εξισώσεων...........561
 Α.2.12 Ιδιοτιμές και ιδιοδιανύσματα...564
 Α.2.13 Ιδιότητες των ιδιοτιμών και των ιδιοδιανυσμάτων.......................566
 Α.2.14 Τετραγωνικές μορφές και θετικά ορισμένες μήτρες......................572

Παράρτημα Β: Στατιστική..575
 Β.1 Τυχαίες μεταβλητές και κατανομές πιθανότητας.................................575
 Β.2 Η μονομεταβλητή κανονική κατανομή πιθανότητας..............................576
 Β.3 Διμεταβλητές κατανομές..577
 Β.4 Σχέσεις μεταξύ κατανομών χ², t, και F της κανονικής κατανομής.......579
 Β.5 Προσδοκίες στις διμεταβλητές κατανομές...580
 Β.6 Πολυμεταβλητής πυκνότητες...580
 Β.7 Πολυμεταβλητή κανονική pdf..582
 Β.8 Κατανομές τετραγωνικών μορφών..583
 Β.9 Ανεξαρτησία τετραγωνικών μορφών...586
 Β.10 Ανεξαρτησία της τετραγωνικής μορφής και γραμμική συνάρτηση........586

Παράρτημα Γ: Συνοδευτικό CD-ROM ..589

Παράρτημα Δ: Στατιστικοί πίνακες ...591

Ευρετήριο...613
ΚΕΦΑΛΑΙΟ 2

Άλλες πλευρές των διμεταβλητών σχέσεων

Στο Κεφάλαιο 1 παρουσιάσαμε ένα σύνολο επαγωγικών διαδικασιών που σχετίζονται με τους εκτιμητές ελαχίστων τετραγώνων (LS) στο πλαίσιο των διμεταβλητών σχέσεων. Η προέλευση αυτών των διαδικασιών βασίστηκε σε δύο κρίσιμες υποθέσεις, η μία από τις οποίες αφορούσε τη μορφή της υπό συνθήκη προσδοκίας \(E(Y|X) \) και η άλλη τις στοχαστικές ιδιότητες του διαταρακτικού όρου \(u \). Οι συγκεκριμένες υποθέσεις ήταν

\[
E(Y|X) = a + \beta X \\
E(u_i) = 0 \quad \text{για κάθε } i \\
E(u_i^2) = \sigma^2 \quad \text{για κάθε } i \\
E(u_iu_j) = 0 \quad \text{για } i \neq j
\]

(2.1)

Από την Εξ. (2.2) και την υπόθεση της σταθερής ερμηνευτικής μεταβλητής προκύπτει επίσης ότι

\[
E(X_iu_j) = X_iE(u_j) = 0 \quad \text{για κάθε } i, j
\]

(2.2)

Αν προσθέσουμε την υπόθεση της κανονικότητας στην Εξ. (2.2) λαμβάνουμε

\[
\text{Oi } u_i \text{ είναι iid } N(0, \sigma^2)
\]

(2.3)

που διαβάζεται ως «Οι \(u_i \) είναι ανεξάρτητα και πανομοιότυπα κατανεμημένες κανονικές μεταβλητές με μέσο όρο μηδέν και διακύμανση \(\sigma^2 \)». Η εγκυρότητα του επαγωγικών μεθόδων εξαρτάται προφανώς από την ορθότητα των υποθέσεων στις οποίες βασίζονται.

Το μεγαλύτερο μέρος του κεφαλαίου αυτού πραγματεύεται διάφορους εφικτούς επαναπροσδιορισμούς της υπόθεσης της υπό συνθήκη προσδοκίας στην Εξ. (2.1). Πρώτα θα εξετάσουμε ορισμένα από τα ζητήματα που προκύπτουν όταν ο η μεταβλητή παλαιδρόμησης (ερμηνευτική μεταβλητή) είναι ο χρόνος. Αυτό μας οδηγεί φυσιολογικά στο να εξετάσουμε τις καμπύλες στα-
θερού ρυθμού αύξησης, όπου ο λογάριθμος της εξαρτημένης μεταβλητής εκφράζεται ως γραμμική συνάρτηση του χρόνου. Στη συνέχεια εξετάζουμε περιπτώσεις όπου οι μετασχηματισμοί της εξαρτημένης και της ερμηνευτικής μεταβλητής μπορούν να είναι χρήσιμοι. Άρκετες σχέσεις που είναι μη γραμμικές στις αρχικές μεταβλητές μπορούν να γίνουν γραμμικές με τους κατάλληλους μετασχηματισμούς. Σε αυτές τις περιπτώσεις, οι απλές τεχνικές για το γραμμικό υπόδειγμα που αναπτύχθηκαν στο Κεφάλαιο 1 μπορούν να εφαρμοστούν στις μετασχηματισμένες μεταβλητές.

Στη συνέχεια εξετάζουμε το διμεταβλητό υπόδειγμα όπου η ερμηνευτική μεταβλητή είναι απλώς η υστέρηση της εξαρτημένης μεταβλητής. Αρκετές σχέσεις που είναι μη γραμμικές στις αρχικές μεταβλητές μπορούν να γίνουν γραμμικές με τους κατάλληλους μετασχηματισμούς. Σε αυτές τις περιπτώσεις, οι απλές τεχνικές για το γραμμικό υπόδειγμα που αναπτύχθηκαν στο Κεφάλαιο 1 μπορούν να εφαρμοστούν στις μετασχηματισμένες μεταβλητές.

2.1 Ο ΧΡΟΝΟΣ ΩΣ ΜΕΤΑΒΛΗΤΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

Σε ένα διάγραμμα χρονοσειράς όπως παρουσιάζεται στο Κεφάλαιο 1, η μεταβλητή \(Y \) τοποθετείται στον κατακόρυφο άξονα και ο χρόνος στον οριζόντιο. Το διάγραμμα αυτό μπορεί, επίσης, να θεωρηθεί ως διάγραμμα διασποράς, οπότε η μόνη διαφορά σε σχέση με το συμβατικό διάγραμμα διασποράς είναι ότι η μεταβλητή \(T \) (ο χρόνος) αυξάνεται μονοτονικά κατά μία μονάδα με κάθε παρατήρηση. Πολλές οικονομικές μεταβλητές αυξάνονται ή μειώνονται με το χρόνο. Μια σχέση γραμμικής τάσης θα μπορούσε να γραφεί σύμφωνα με το υπόδειγμα

\[Y = \alpha + \beta T + u \] (2.5)

όπου \(T \) είναι ο χρόνος. Η μεταβλητή \(T \) μπορεί να περιγραφεί με πολλούς τρόπους, αλλά κάθε περιγραφή απαιτεί να φαίνεται ως προς την οποία μετράται ο χρόνος και τη μονάδα μέτρησης. Για παράδειγμα, αν διαθέτουμε ετήσιες παρατήρησεις κάποιας μεταβλητής για τα \(n = 13 \) έτη από το 1980 έως το 1992, πιθανές εξειδικεύσεις της μεταβλητής \(T \) θα ήταν οι

\[T = 1, 2, 3, \ldots, 13 \]

\[T = -6, -5, -4, \ldots, 6 \]
Και στις τρεις περιπτώσεις, η μονάδα μέτρησης είναι το έτος. Οι αρχές είναι, αντίστοιχα, η έναρξη του Γρηγοριανού Ημερολογίου, το 1979 και το 1986. Το τρίτο υπόδειγμα ενδείκνυται σε υπολογισμούς μικρής κλίμακας, επειδή στην περίπτωση αυτή η \(T \) έχει μέσο όρο μιζέν, οπότε οι κανονικές εξισώσεις για να προσαρμόσουμε την Εξ. (2.5) απλοποιούνται στις

\[
 a = \bar{Y} \quad \text{και} \quad b = \bar{TY} / \bar{T^2}
\]

Πολλές εφαρμογές λογισμικού θα δημιουργήσουν μια μεταβλητή τάσης (TREND) για χρήση στην ανάλυση παλινδρόμησης. Αυτή είναι η δεύτερη περιγραφή για τον \(T \) των παραπάνω σχέσεων.

2.1.1 Καμπύλες σταθερού ρυθμού αύξησης

Αν πάρουμε τις διαφορές πρώτου βαθμού στην Εξ. (2.5), έχουμε

\[
 \Delta Y_t = \beta + (u_t - u_{t-1})
\]

Αν αγνοήσουμε τους διαταρακτικούς όρους, η σημασία της Εξ. (2.5) είναι ότι η σειρά αυξάνεται (μειώνεται) κατά μία σταθερή ποσότητα σε κάθε περίοδο. Για αύξουσα σειρά (\(\beta > 0 \)), αυτό σημαίνει φθίνοντα ρυθμό και για φθίνουσα σειρά (\(\beta < 0 \)), η περιγραφή δίνει αυξανόμενο ρυθμό μείωσης. Για σειρές στις οποίες υπάρχει σταθερός ρυθμός αύξησης, είτε θετικός είτε αρνητικός, η Εξ. (2.5) αποτελεί ακατάλληλη περιγραφή. Η κατάλληλη περιγραφή εκφράζει το λογάριθμο της σειράς ως γραμμική συνάρτηση του χρόνου. Το αποτέλεσμα αυτό μπορεί να θεωρηθεί ως εξής.

Χωρίς διαταρακτικούς όρους, μια σειρά σταθερού ρυθμού αύξησης δίνεται από την εξίσωση

\[
 Y_t = Y_0(1 + g)^t
\]

όπου \(g = (Y_t - Y_{t-1}) / Y_{t-1} \) είναι ο σταθερός αναλογικός ρυθμός αύξησης ανά περίοδο. Παίρνοντας τους λογαριθμούς και των δύο μερών της Εξ. (2.6) έχουμε 1

\[
 \ln Y_t = \alpha + \beta t
\]

όπου

\[
 \alpha = \ln Y_0 \quad \text{και} \quad \beta = \ln(1 + g)
\]

Αν υποψιαστούμε ότι μια σειρά έχει σταθερό ρυθμό αύξησης, μπορούμε να το ελέγξουμε γρήγορα σχεδιάζοντας το διάγραμμα διασποράς των λογαριθμίων της σειράς ως προς το χρόνο. Αν το

\[\footnote{1 Χρησιμοποιούμε τον όρο \ln για να εκφράσουμε το φυσικό λογάριθμο με βάση το \(e \)} \]
Οικονομετρικές Μεθόδοι
dιάγραμμα είναι σχεδόν γραμμικό, τότε στην Εξ. (2.7) μπορεί να προσαρμοστεί καμπύλη με τη μέθοδο των ελαχίστων τετραγώνων, με τη χρήση παλινδρόμησης των λογαριθμών της Y ως προς το χρόνο. Στην περίπτωση αυτή, ο συντελεστής κλίσης δίνει την τιμή \hat{g} ως εκτίμηση για το ρυθμό αύξησης, και συγκεκριμένα

$$b = \ln(1 + \hat{g}) \quad \text{που δίνει} \quad \hat{g} = e^b - 1$$

Ο συντελεστής β της Εξ. (2.7) αποτελεί το συνεχές ρυθμό της μεταβολής $\partial Y_t / \partial t$, ενώ η g αποτελεί το διακριτό ρυθμό. Ο σχηματισμός μιας χρονοσειράς σταθερού ρυθμού αύξησης σε συνεχή χρόνο δίνει

$$Y_t = Y_0 e^{bt} \quad \text{ή} \quad \ln Y_t = \alpha + \beta t$$

Τέλος, σημειώστε ότι, αν πάρουμε τις διαφορές πρώτου βαθμού στην Εξ. (2.7), έχουμε

$$\Delta \ln Y_t = \beta = \ln(1 + g) \equiv g$$

Συνεπώς, αν πάρουμε τις διαφορές πρώτου βαθμού των λογαριθμών έχουμε το συνεχές ρυθμό αύξησης, που με τη σειρά του είναι μια προσέγγιση του διακριτού ρυθμού αύξησης. Η προσέγγιση αυτή είναι αρκετά ακριβής μόνο για μικρές τιμές της g.

2.1.2 Αριθμητικό παράδειγμα

Ο Πίνακας 2.1 παρέχει στοιχεία για την παραγωγή ασφαλτούχου λιθάνθρακα στις Ηνωμένες Πολιτείες ανά δεκαετίες, από το 1841 έως το 1910. Αν απεικονίσουμε σε διάγραμμα το λογαριθμό της παραγωγής ως προς το χρόνο, προκύπτει μια γραμμική σχέση.

ΠΙΝΑΚΑΣ 2.1

<table>
<thead>
<tr>
<th>Δεκαετία</th>
<th>Μέση ετήσια παραγωγή (σε 1000 καθαρούς τόνους)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1841–1850</td>
<td>1.837</td>
</tr>
<tr>
<td>1851–1860</td>
<td>4.868</td>
</tr>
<tr>
<td>1861–1870</td>
<td>12.411</td>
</tr>
<tr>
<td>1871–1880</td>
<td>32.617</td>
</tr>
<tr>
<td>1881–1890</td>
<td>82.770</td>
</tr>
<tr>
<td>1891–1900</td>
<td>322.958</td>
</tr>
</tbody>
</table>

Έτσι, προσαρμόζουμε μια καμπύλη σταθερού ρυθμού αύξησης και υπολογίζουμε τον ετήσιο ρυθμό αύξησης. Αφού θέσουμε ως αρχή του χρόνου το μέσο της δεκαετίας 1870 και δεχθούμε ως μονόδα χρόνον τα 10 έτη, προκύπτουν οι χρονοσειρές \hat{t} που φαίνονται στον πίνακα. Από τα στοιχεία του πίνακα
ΚΕΦΑΛΑΙΟ 2: Άλλες πλευρές των διμεταβλητών σχέσεων

\[a = \frac{\sum \ln Y}{n} = \frac{71.7424}{7} = 10.2489 \]

\[b = \frac{\sum \ln Y}{\sum t^2} = \frac{24.2408}{28} = 0.8657 \]

Ο συντελεστής \(r^2 \) αυτής της παλινδρόμησης είναι 0.9945, επαληθεύοντας τη γραμμικότητα του διάγραμματος διασποράς. Ο εκτιμημένος ρυθμός αύξησης ανά δεκαετία υπολογίζεται από τη σχέση

\[\dot{g} = e^b - 1 = 1.3768 \]

Συνεπώς, ο σταθερός ρυθμός αύξησης είναι σχεδόν 140 τοις εκατό ανά δεκαετία. Ο ετήσιος ρυθμός αύξησης (annual growth rate, agr) υπολογίζεται στη συνέχεια από τη σχέση

\[(1 + \text{agr})^{10} = 2.3768 \]

οπού δίνει \(\text{agr} = 0.0904 \), ή μόλις περίπου τοις εκατό από 9 τοις εκατό ετησίως. Ο ισοδύναμος συνεχής ρυθμός είναι 0.0866.

Η μεταβλητή του χρόνου μπορεί να αντιμετωπιστεί ως σταθερή ανεξάρτητη μεταβλητή και, επομένως, οι επαγωγικές διαδικασίες του Κεφαλαίου 1 εφαρμόζονται σε εξισώσεις όπως οι (2.5) και (2.7).2

2.2 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ

Ο λογαριθμικός μετασχηματισμός της εξαρτημένης μεταβλητής στις μελέτες αύξησης οδηγεί φυσιολογικά στην εξέταση και άλλων μετασχηματισμών. Οι μετασχηματισμοί αυτοί μπορεί να αναφέρονται στην εξάρτημα μεταβλητή, στην ανεξάρτητη μεταβλητή, ή και στις δύο. Ο κύριος σκοπός τους είναι να επιτευχθεί ένας μετασχηματισμός γραμμικοποίησης ώστε να μπορούν να εφαρμόζονται οι απλές τεχνικές του Κεφαλαίου 1 στις κατάλληλες μετασχηματισμένες μεταβλητές και να παρακάμπτεται έτσι η ανάγκη περαιτέρω προσαρμογής σύνθετων σχέσεων.

2.2.1 Μετασχηματισμοί λογάριθμος-λογάριθμος

Η εξίσωση της αύξησης χρησιμοποιεί ένα μετασχηματισμό της εξαρτημένης μεταβλητής. Πολλές σημαντικές οικονομικές εφαρμογές χρησιμοποιούν τους λογάριθμους και των δύο μεταβλητών. Η σχετική συναρτησιακή περιγραφή είναι

\[Y = AX^\beta \quad ή \quad \ln Y = \alpha + \beta \ln X \]

(2.10)

όπου $\alpha = \ln A$. Η ελαστικότητα της Y ως προς τη X ορίζεται ως

$$\text{Ελαστικότητα} = \frac{dY}{dX} \frac{X}{Y}$$

Η παραπάνω εξίσωση μετράει την ποσοστιαία μεταβολή της Y για 1 τοις εκατό μεταβολή της X. Αν εφαρμόσουμε την εξίσωση της ελαστικότητας στην πρώτη έκφραση της Εξ. (2.10), βλέπουμε ότι η ελαστικότητα αυτής της συνάρτησης είναι απλώς β, και η δεύτερη έκφραση της Εξ. (2.10) δείχνει ότι η κλίση της περιγραφής λογαριθμος-λογαριθμος είναι η ελαστικότητα. Συνεπώς, η Εξ. (2.10) ορίζει μια συνάρτηση σταθερής ελαστικότητας (constant elasticity function). Παράδειγμα εξειδικεύς, εμφανίζονται συχνά σε εφαρμοσμένες εργασίες, πιθανόν λόγω της απλότητάς τους και της εύκολης ερμηνείας τους, καθώς οι κλίσεις στις παλινδρομής λογαριθμος-λογαριθμος αποτελούν άμεσες εκτιμήσεις των (σταθερών) ελαστικοτήτων. Στο Σχήμα 2.1 απεικονίζονται ορισμένα τυπικά σχέδια στο επίπεδο Y, X για διάφορα β.

ΣΧΗΜΑ 2.1
$Y = AX^\beta$.

2.2.2 Ημιλογαριθμικοί μετασχηματισμοί

Ένα τέτοιο παράδειγμα έχει παρουσιαστεί ήδη στην εξίσωση της σταθερής αύξησης. Η γενική μορφή είναι 3

3 Ο εξειδικευμένος αναγνώστης θα έχει παρατηρήσει ότι, εξετάζοντας διάφορους μετασχηματισμούς, δεν είμαστε συνετείς ως προς το διαταρακτικό όρο, που τον περιλαμβάνουμε σε ορισμένες εξισώσεις και τον παραλείπουμε από άλλες με σκοπό να απλοποιήσουμε τους μετασχηματισμούς. Η μόνη δικαιολογία γι’ αυτή την (κοινή) πρακτική είναι η άγνοια και η ευκολία. Ο αξιόπιστος Sir Julian Huxley (διακεκριμένος βιολόγος και αδελφός του συγγραφέα Aldous Huxley) περιέγραψε κάποτε το Θεό ως «προσωποποιημένο σύμβολο της αθεράπευτης άγνοιας του ανθρώπου». Ο διαταρακτικός όρος παίζει παρόμοιο ρόλο στην οικονομετρία, καθώς είναι ένα στοχαστικό
Η ισχύς αυτή χρησιμοποιείται ευρέως στα υποδείγματα ανθρώπινου κεφαλαίου, όπου η \(Y \) δη-λώνει τα εισοδήματα και η \(X \) τα έτη της εκπαίδευσης ή της πείρας.\(^4\) Από την Εξ. (2.11) έπεται ότι
\[
\frac{dY}{dX} = \beta
\]
Επομένως, η κλίση της ημιλογαριθμικής παλινδρόμησης αποτελεί εκτίμηση της ποσοστιαίας με-ταβολής της \(Y \) ανά μονάδα μεταβολής της \(X \). Μα δεν διέκοψα θετικό \(\beta \) παρουσιάζεται στο Σχήμα 2.2a. Αν αντιστρέψουμε τους άξονες, έχουμε
\[
Y = \alpha + \beta \ln X
\]
(2.12)

ΣΧΗΜΑ 2.2
Ημιλογαριθμικό υπόδειγμα.

Ένα παράδειγμα θετικού β παρουσιάζεται στο Σχήμα 2.2β. Σε μια διαστρωματική μελέτη προβ-πολογισμών των νοικοκυριών, μια τέτοια καμπύλη θα μπορούσε να εκφράζει τη σχέση μεταξύ μιας κατηγορίας δαπανών \(Y \) και του εισοδήματος \(X \). Απαιτείται ένα ορισμένο κατώφλιο εισοδή-ματος \((e^{-\alpha/\beta})\) για να γίνει οπουδήποτε δαπάνη \(y\) αυτό το αγαθό. Οι δαπάνες αυξάνουν τότε

μονοτονικά ως προς το εισόδημα, αλλά με φθίνοντα ρυθμό. Η οριακή ροπή για κατανάλωση \((\beta / X)\) για το αγαθό αυτό μειώνεται καθώς αυξάνεται το εισόδημα, και το ίδιο και η ελαστικότητα \((\beta / Y)\).

2.2.3 Αντίστροφοι μετασχηματισμοί

Οι αντίστροφοι μετασχηματισμοί είναι χρήσιμοι όταν προσομοιώνουμε καταστάσεις όπου υπάρχουν ασύμπτωτες για τη μία ή και τις δύο μεταβλητές. Ας θεωρήσουμε τη σχέση

\[
(Y - \alpha_1)(X - \alpha_2) = \alpha_3
\]

(2.13)

Η σχέση αυτή περιγράφει μια ορθογώνια υπερβολική καμπύλη με ασύμπτωτες στα \(Y = \alpha_1\) και \(X = \alpha_2\). Στο Σχήμα 2.3 παρουσιάζονται ορισμένα τυπικά διαγράμματα θετικών και αρνητικών \(\alpha_3\). Η Εξ. (2.13) μπορεί να γραφεί ως

\[
Y = \alpha_1 + \frac{\alpha_3}{X - \alpha_2}
\]

(2.14)

\[\text{ΣΧΗΜΑ 2.3}\]

Ορθογώνια υπερβολική καμπύλη.

Το αποτέλεσμα της πρόσθεσης ενός όρου σφάλματος στην Εξ. (2.14) και της προσπάθειας να ελαχιστοποιηθεί το αόριστο τετραγώνων των καταλόγου τεν οι καταλόγου δίνει εξίσωσης πού είναι μη γραμμικές ως προς το \(\alpha\). Στην περίπτωση αυτή, είναι αδύνατος ο γραμμικός μετασχηματισμός που θα
μας επαναφέρει στις απλές διαδικασίες του Κεφαλαίου 1. Εντούτοις, υπάρχουν δύο ειδικές περιπτώσεις της Εξ. (2.14) όπου μπορούν να εφαρμοστούν γραμμικοί μετασχηματισμοί. Αν θέσουμε το α_2 ίσο με το μηδέν, έχουμε

$$Y = \alpha + \beta \left(\frac{1}{X} \right)$$

(2.15)

όπου $\alpha = \alpha_1$ και $\beta = \alpha_3$. Αντίθετα, άλλως, αν θέσουμε α_1 ίσο με το μηδέν, έχουμε

$$\left(\frac{1}{Y} \right) = \alpha + \beta X$$

(2.16)

όπου $\alpha = -\alpha_2/\alpha_3$ και $\beta = 1/\alpha_3$. Σχηματικές παραστάσεις απεικονίζονται στα Σχήματα 2.4 και 2.5.

Στη μελέτη των καμπυλών Phillips, προσαρμόζονται συχνά καμπύλες του τύπου του Σχήματος 2.4a, όπου η Y απεικονίζεται το ποσοστό του μισθού ή τη μεταβολή της τιμής και η X το ποσοστό της ανεργίας. Η περιγραφή αυτή εμπεριέχει τη μη ρεαλιστική υπόθεση ότι η ασύμπτωτη για το ποσοστό ανεργίας είναι μηδέν. Η εναλλακτική απλοποίηση της Εξ. (2.16) επιτρέπει ένα θετικό ελάχιστο ποσοστό ανεργίας, αλλά με κόστος την επιβολή μιας ελάχιστης μηδενικής μεταβολής μισθών.

ΣΧΗΜΑ 2.4

![Σχήμα 2.4](attachment:diagram.png)

$$Y = \alpha + \beta \left(\frac{1}{X} \right)$$

5 Όπως θα δούμε παρακάτω, η εξίσωση μπορεί να προσαρμοστεί απευθείας με μη γραμμικά ελάχιστα τετράγωνα.
ΟΙΚΟΝΟΜΕΤΡΙΚΕΣ ΜΕΘΟΔΟΙ

ΣΧΗΜΑ 2.5

\[\frac{1}{Y} = \alpha + \beta X \]

Η γενικότερη περιγραφή που απεικονίζεται στο Σχήμα 2.3α καταργεί και τους δύο περιορισμούς και επιτρέπει τη δυνατότητα ενός θετικού ελάχιστου ποσοστού ανεργίας και μιας αρνητικής μεταβολής μισθών. Το Σχήμα 2.4β μπορεί να απεικονίζει μια διαστρωματική συνάρτηση δαπανών. Απαιτείται ένα ορισμένο κατώφλι εισοδήματος για να υπάρξει οποιαδήποτε δαπάνη για γεύμα, λόγου χάρη, σε εστιατόριο, όμως αυτή η δαπάνη τείνει προς κάποιο ανώτατο όριο όπου ο δισεκατομμυριούχος δαπανά απειροελάχιστα περισσότερα από τον εκατομμυριούχο.

2.3 ΕΝΑ ΕΜΠΕΙΡΙΚΟ ΠΑΡΑΔΕΙΓΜΑ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΧΕΣΗΣ: ΠΛΗΘΩΡΙΣΜΟΣ ΚΑΙ ΑΝΕΡΓΙΑ ΣΤΙΣ ΗΠΑ

Η δημοσίευση του άρθρου «Phillips Curve» το 1958 ξεκίνησε μια νέα βιομηχανία οικονομικής ανάπτυξης, οι επαγγελματίες της οποίας αναζήτησαν (και ανακάλυψαν) καμπύλες Phillips σε διάφορες χώρες. Στο αρχικό άρθρο, ο Phillips απεικόνισε την ετήσια ποσοστιαία μεταβολή μισθών σε σχέση με το ποσοστό ανεργίας στο Ηνωμένο Βασίλειο, για την περίοδο 1861–1913. Το διάγραμμα διαστρωματικός αποκάλυψε μια αρνητική μη γραμμική σχέση, την οποία ο Phillips συνόψισε στη μορφή μιας καμπύλης γραμμής. Αξιοσημείωτο είναι ότι τα δεδομένα δύο συνεχίζονται...
νων περιόδων, 1913–1948 και 1948–1957, βρίσκονται κοντά στην καμπύλη που προέκυψε από τα δεδομένα των ετών 1861–1913. Αυτή η απλή καμπύλη του Phillips δεν άντεξε στο χρόνο και δέχθηκε τόσο θεωρητικές όσο και στατιστικές επιθέσεις και αναδιατυπώσεις. Έτσι, η απλή διμεταβλητή ανάλυση του πληθωρισμού των μισθών (ή των τιμών) και της ανεργίας δεν μπορεί πλέον να θεωρείται σωστή οικονομετρία. Εντούτοις, στο κεφάλαιο αυτό εξακολουθούμε να περιρρίζομαστε στις διμεταβλητές σχέσεις, και το επόμενο παράδειγμα θα πρέπει να αντιμετωπιστεί μόνον ως επεξήγηση των στατιστικών βημάτων που ακολουθούνται στη διαδικασία προσαρμογής μη γραμμικών σχέσεων σε δύο μεταβλητές.

Τα δεδομένα που χρησιμοποιούνται είναι ετήσια στοιχεία για τις Ηνωμένες Πολιτείες από το 1957 έως το 1970. Η μεταβλητή για τον πληθωρισμό (INF) είναι η ετήσια ποσοστιαία μεταβολή του Δείκτη Τιμών Καταναλωτή (CPI). Η μεταβλητή για την ανεργία (UNR) είναι το ποσοστό ανεργίας των πολιτών εργατών ηλικίας 16 ετών και άνω. Ο πληθωρισμός κυμαίνεται μεταξύ μιας χαμηλής τιμής 0.69 τοις εκατό το 1959 και μιας υψηλής τιμής 5.72 τοις εκατό το 1970, με μέση τιμή 2.58 τοις εκατό. Το ποσοστό ανεργίας, που έχει αυξηθεί από το 1957, ανήλθε σε ένα μέγιστο 6.7 τοις εκατό το 1961 και μειώθηκε σταθερά στη συνέχεια της δεκαετίας του 1960. Το Σχήμα 2.6α απεικονίζει το διάγραμμα διασποράς του πληθωρισμού ως προς το τρέχον ποσοστό ανεργίας. Η κλίση είναι αρνητική, αλλά το διάγραμμα έχει διασκορπισμένες τιμές. Στο Σχήμα 2.6β, ο πληθωρισμός σχεδιάζεται σε σχέση με το ποσοστό ανεργίας του προηγούμενου έτους. Δεν είναι παράλογο να υπάρξει υπερήξη στην απόκριση, καθώς απαιτείται χρόνος ώσπου η ανεργία να επηρεάσει τους μισθούς, και ακόμη περισσότερος χρόνος ώσπου οι μεταβολές των μισθών να επηρεάσουν σταθερά στις τιμές των τελικών προϊόντων. Στην περίπτωση αυτή, το διάγραμμα είναι περισσότερο συνεκτικό και υπάρχει κάποια ένδειξη μη γραμμικότητας. Το ίδιο σχήμα δείχνει την προσαρμογή μιας γραμμικής παλινδρόμησης του πληθωρισμού επί της ανεργίας με υστέρηση. Η γραμμική περιγραφή προφανώς εκφράζει ανεπαρκώς το φαινόμενο. Από τα 14 καταλύτες της παλινδρόμησης, 5 είναι θετικά και 9 αρνητικά. Τα 5 θετικά καταλύτες συμβαίνουν στις χαμηλότερες και υψηλότερες τιμές της ερμηνευτικής μεταβλητής. Κατά συνέπεια, η εξέταση των καταλύτων μπορεί να υποδηλώνει εσφαλμένη περιγραφή. Σειρές ή ακολουθίες θετικών ή αρνητικών καταλοίπων υποδηλώνουν εσφαλμένη περιγραφή.

<table>
<thead>
<tr>
<th>ΠΙΝΑΚΑΣ 2.2</th>
<th>Διάφορες παλινδρόμησες πληθωρισμού/ανεργία, 1957–1970*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ερμηνευτική μεταβλητή</td>
<td>Σταθερά</td>
</tr>
<tr>
<td>UNR</td>
<td>6.92</td>
</tr>
<tr>
<td>UNR(−1)</td>
<td>(3.82)</td>
</tr>
<tr>
<td>UNR(−1)</td>
<td>9.13</td>
</tr>
<tr>
<td>UNR(−1)</td>
<td>(9.80)</td>
</tr>
<tr>
<td>1/UNR(−1)</td>
<td>−4.48</td>
</tr>
<tr>
<td>1/UNR(−1)</td>
<td>(−6.51)</td>
</tr>
</tbody>
</table>

* Οι στατιστικές \(t \) είναι οι αριθμοί μέσα στις παρενθέσεις. SER είναι το τυπικό σφάλμα της παλινδρόμησης.
ΣΧΗΜΑ 2.6

Το Σχήμα 2.6γ δείχνει το αποτέλεσμα της προσαρμογής της αντίστροφης σχέσης

$$\text{INF} = \alpha + \gamma \left[\frac{1}{\text{UNR}(-1)} \right] + \mu \quad (2.17)$$

Τα κατάλοιπα είναι κάπως μικρότερα σε σύγκριση με το Σχήμα 2.6β και το διάγραμμα είναι κάπως περισσότερο γραμμικό, όχι όμως απόλυτα. Στον Πίνακα 2.2 συνοψίζονται τα κύρια αποτελέσματα των παλινδρομήσεων που σχετίζονται με το Σχήμα 2.6. Επισημαίνουμε το σημαντικό άλμα του r^2 όταν αλλάζουμε την ερμηνευτική μεταβλητή από την τρέχουσα ανεργία στην ανερ-
γία με υστέρηση, και μια περαιτέρω αύξηση από 0.81 σε 0.90 όταν χρησιμοποιούμε τον αντίστροφο μετασχηματισμό.

Τέλος, σημειώνουμε το αποτέλεσμα της προσαρμογής της μη γραμμικής σχέσης

\[\text{INF} = \alpha_1 + \frac{\alpha_3}{\text{UNR}(-1) - \alpha_2} + u \]

(2.18)

Η προσαρμογή επιτυγχάνεται με μη γραμμικά ελάχιστα τετράγωνα, που είναι μια επαναληπτική διαδικασία εκτίμησης η οποία αρχίζει με κάποιες αυθαίρετες τιμές για τις άγνωστες παραμέτρους, υπολογίζει το άθροισμα τετραγώνων των καταλοίπων, κατόπιν αναζητά αλλαγές στις παραμέτρους για να μειώσει το RSS και συνεχίζει με τον ίδιο τρόπο μέχρις ότου οι διαδοχικές μεταβολές στις εκτιμώμενες παραμέτρους και στα σχετιζόμενα RSS να είναι αμελητέες. Στο τελικό στάδιο ενδέχεται να προκύψουν τυπικά σφάλματα και άλλοι στατιστικοί έλεγχοι όπως όμως θα εξηγήσουμε στη συνέχεια, τα σφάλματα αυτά έχουν τόσο μια ασυμπτωτική αιτιολόγηση και όχι τις ακριβείς ιδιότητες των μη-κρινόντων δειγμάτων. Οπότε επισημαίνουμε πιο πάνω, οι γραμμικοί μετασχηματισμοί που επιτεύχθηκαν όταν οι \(\alpha_1 \) και \(\alpha_2 \) θεωρήθηκαν ίσοι με μηδέν θέτουν θεωρητικά ακατάλληλους περιορισμούς στη σχήμα της σχέσης. Αν τεθεί \(\alpha_2 \) ίσο με μηδέν, όπως στην τρίτη παλινδρόμηση του Πίνακα 2.2, \(\alpha_1 \) ίσο με μηδέν, έχουμε μια χαμηλότερη ασύμπτωτη για το ποσοστό ανεργίας, το οποίο υποδηλώνει ότι το επίπεδο των τιμών δεν μπορεί να υποχωρήσει όσο υψηλό και αν είναι το επίπεδο της ανεργίας, που είναι επίσης αβάσιμος περιορισμός. Αν χρησιμοποιήσουμε μη γραμμική μέθοδο ελαχίστων τετραγώνων για να εκτιμήσουμε τη σχέση χωρίς αυτούς τους περιορισμούς, έχουμε

\[\text{INF} = -0.32 + \frac{4.8882}{\text{UNR}(-1) - 2.6917} \]

με \(r^2 = 0.95 \) και Τοπικό σφάλμα παλινδρόμησης= 0.40. Η έκφραση αυτή παρέχει τη βέλτιστη προσαρμογή και το χαμηλότερο πληθωρισμό από όλες τις παλινδρόμησες. Ο σταθερός όρος, που είναι η εκτιμώμενη ασύμπτωτη για το ποσοστό του πληθωρισμού, είναι ελαφρά αρνητικός όχι όμως σημαντικό διαφορετικό από το μηδέν. Η εκτιμώμενη ασύμπτωτη για το ποσοστό ανεργίας είναι 2.69 τοις εκατό, η αντίθεση μεταξύ των ασυμπτωτών της ανεργίας κατά τη διαδικασία προσαρμογής των Εξισώσεων (2.17) και (2.18) μας υποθέτησε με εντυπωσιακό τρόπο το γεγονός ότι κάθε περιγραφή επιβάλλει όντα συγκεκριμένα σχήμα στην εκτιμώμενη σχέση. Η Εξ. (2.18) σημαίνει δραματικά αυξανόμενα ποσοστά πληθωρισμού για ποσοστά ανεργίας μόλις κατώτερα από το 3 τοις εκατό, ενώ η Εξ. (2.17) απαιτεί ποσοστά ανεργίας κατώτερα από το 1 τοις εκατό προκειμένου να δώσει παρόμοια μεγέθη πληθωρισμού. Οι προσαρμογές στις δεδομένα του δείγματος δε διαφέρουν πάρα πολύ, αλλά οι επεκτάσεις των ερμηνειών πέρα από το εύρος των στοιχείων του δείγματος μας δίνουν εντυπωσιακά διαφορετικές εικόνες.
ΟΙΚΟΝΟΜΟΣΤΡΙΚΕΣ ΜΕΘΟΔΟΙ

Η νέα έκδοση αυτού του κλασικού συγγράμματος παρέχει μια ισορροπημένη και πλήρη μελέτη της σύγχρονης θεωρίας και πρακτικής της οικονομικής, σε πυχιακού και μεταπυχιακό επίπεδο. Η εξέταση των κλασικών θεμάτων έχει συνδυαστεί προσεκτικά με νεότερες τεχνικές και τάσεις.

Το βιβλίο αποτελεί έναν πλήρη και εύχρηστο οδηγό των διαθέσιμων μέθοδων της οικονομικής, παρουσιάζοντας τις μεθόδους αυτές μέσω εφαρμογών με πραγματικά σύνολα δεδομένων.

Καλύπτονται 6 βασικοί τομείς της οικονομικής:
- Ασυμπτωτική θεωρία
- Χρονοσειρές
- Υπολογισμός υποδειγμάτων
- Γενικευμένη μέθοδος των ροπών
- Εντατικές υπολογιστικές μέθοδοι
- Μικροοικονομικότητα

Παρόλο που οι συγγραφείς του βιβλίου θεωρούν ότι ο φοιτητής πρέπει να έχει παρακολούθησε ένα βασικό πρόγραμμα σπουδών στη στατιστική, παρέχουν ένα πλήρες παράρτημα με τις βασικές αρχές της στατιστικής θεωρίας για όσους χρειάζεται να τις επαναλάβουν. Επιπλέον, έχει συμπεριληφθεί και ένα παράρτημα όπου εξετάζονται συνοπτικά όλα τα σχετικά θέματα της αλγεβράς μητρών.

Το βιβλίο συνοδεύεται από CD το οποίο περιέχει πραγματικά σύνολα δεδομένων, κάτι που επιτρέπει στον αναγνώστη να επαναλάβει τις εφαρμογές του βιβλίου, να πηγαματιστεί, και να πραγματοποιήσει τις δικές του αναλύσεις.